
Towards Security-Aware Virtual Environments for Digital Twins
Matthias Eckhart

Christian Doppler Laboratory “SQI”, Inst. of Information
Systems Engineering, TU Wien

Vienna, Austria
matthias.eckhart@tuwien.ac.at

Andreas Ekelhart
SBA Research
Vienna, Austria

andreas.ekelhart@sba-research.org

ABSTRACT
Digital twins open up new possibilities in terms of monitoring,
simulating, optimizing and predicting the state of cyber-physical
systems (CPSs). Furthermore, we argue that a fully functional, vir-
tual replica of a CPS can also play an important role in securing
the system. In this work, we present a framework that allows users
to create and execute digital twins, closely matching their physical
counterparts. We focus on a novel approach to automatically gener-
ate the virtual environment from specification, taking advantage of
engineering data exchange formats. From a security perspective, an
identical (in terms of the system’s specification), simulated environ-
ment can be freely explored and tested by security professionals,
without risking negative impacts on live systems. Going a step
further, security modules on top of the framework support security
analysts in monitoring the current state of CPSs. We demonstrate
the viability of the framework in a proof of concept, including
the automated generation of digital twins and the monitoring of
security and safety rules.

CCS CONCEPTS
• Security andprivacy→ Intrusion detection systems; •Com-
puter systems organization→ Embedded and cyber-physical sys-
tems;

KEYWORDS
Cyber-physical systems; industrial control systems; digital twin;
simulation; security monitoring; AutomationML

1 INTRODUCTION
The terms Industry 4.0 and Smart Manufacturing refer to the vision
of a highly efficient, autonomous and flexible production process.
At the core of both aforementioned concepts are cyber-physical
systems (CPSs). A CPS is a system that combines computational
(e.g., computing hardware/software) and physical (e.g., actuators)
components, allowing the system to interact with the real world [4].
Moreover, CPSs can integrate networking capabilities, a feature that
is a cornerstone of interconnected and autonomously operating
manufacturing systems.

However, increased digitization and connectivity open up new
attack vectors that may not only put an organization’s assets at
risk, but could also endanger human life. This is especially im-
portant for industrial control systems (ICSs) — a subset of CPSs —
where safety has been the main focus. In this context, it should be
noted that security issues can lead to safety implications. In fact,
the lack of adequate measures to secure CPSs in critical infrastruc-
tures (e.g., sewage treatment plants [30]) could even have severe
consequences for public safety [21, 22].

Security testing, monitoring, and intrusion detection, as defined
in industrial standards and guidelines such as IEC 62443 [14] and
NIST SP 800-82 [31], are important measures to fortify industrial
environments. Due to the criticality of the running systems, testing
in the production environment is not recommended. The setup and
maintenance of test environments on the other hand, is expensive
and time consuming, often leading to incomplete and outdated
environments. A similar issue can be identified with focus on the
evaluation of research results in this domain. As an example, in-
trusion detection in CPS got much attention over the past years,
but the evaluation datasets are frequently not published and the
cyber-physical setup cannot be reproduced most of the time. This
hinders adoption and independent comparison [15, 24].

In this paper, we propose a novel framework named CPS Twin-
ning to build and maintain fully functional digital twins of CPSs.
The term "Digital Twin" was coined by Shafto et al. [29] and de-
scribes the use of holistic simulations to virtually mirror a physical
system [26]. Adopting such a concept could enable operators to
monitor the production process, test changes in a virtual, isolated
environment, and to further strengthen the security and safety of
CPSs.

A recent study by Rubio et al. [27] suggests that a virtual replica
of the physical process may be leveraged for security purposes,
however, leading to new issues concerning the creation and man-
agement as a consequence thereof. While the manual creation of a
virtual environment for digital twins is time consuming and error-
prone, we want to produce the environment completely from spec-
ification. This approach is efficient, reusable, and moreover, guar-
antees an identical setup. Ideally, the specification of the CPS is
already defined and maintained as part of the system engineering
process [19, 20] by means of standardized data formats, such as
AutomationML (AML) [10].

We consider two main modes of operation of the virtual environ-
ment, either (i) in a simulation mode, operating independently of
the physical environment, offering the possibility to monitor and
explore a virtual clone without risk, or (ii) in a replication mode, re-
playing the events from the physical environment for visualization
and analysis. On top of this virtual representation, multiple security
features can be established. For example, security and safety rules
stated as part of the specification can be automatically monitored
on the basis of digital twins. In addition, new physical devices can
be connected and tested in the virtual environment, without influ-
encing production systems. Security testers also have the possibility
to freely explore and attack a virtual replication of the production
setup. With this approach, security can be seamlessly integrated
in the entire production lifecycle, starting from the engineering
phase.

The novel contributions of this paper can be summarized as
follows:

• We propose a framework that provides a security-aware
environment for digital twins.

• We demonstrate the feasibility of the proposed framework
by providing a prototypical implementation, supporting the
virtual replication of the network topology, programmable
logic controllers (PLCs) and their control logic, human ma-
chine interfaces (HMIs), and physical devices (e.g., motor). To
accelerate the development of this prototype, we integrated
two existing open-source tools.

• We show how such virtual environments for digital twins can
be automatically generated from specification (e.g., AML).

• We introduce security relevant use cases for digital twins
in CPSs and show how security and safety rules can be
monitored.

The remainder of the paper is organized as follows. First, in
Section 2, we motivate the need for a security-aware virtual en-
vironment for digital twins by presenting four use cases. In Sec-
tion 3, we outline the architecture of CPS Twinning and discuss
its underlying components. Section 4 presents a proof of concept
implementation of CPS Twinning, followed by Section 5 where we
describe related work. Finally, in Section 6 we provide concluding
remarks and discuss future work.

2 USE CASES
In this section, we describe possible use cases for digital twins
to improve the security of CPSs and support security analysts in
designing defenses.

Intrusion Detection. In a literature review conducted by Mitchell
and Chen [23], the authors concluded that behavior-specification-
based intrusion detection [33] may prove to be a promising ap-
proach to uncover intruders, while keeping the false positive rate at
a minimum. Intrusion detection systems (IDSs) that use this partic-
ular technique attempt to detect malicious activity by identifying
deviations from a defined model of benign behavior [23]. By using
a detailed specification of the production system as a template for
digital twins, they could monitor their own behavior and report
deviations from their specification. This could, e.g., include the de-
tection of unknown devices, unspecified connections, and changes
in the control logic. In addition, specified security and safety rules
could be monitored inside the virtual environment.

Another scenario is the use of additional, independent sensors
to discover manipulations and defects [12, 18]. While the integra-
tion, monitoring, and correlation of new sensors in a production
environment is not trivial, this could be handled completely inside
the digital twin. After placing the additional sensor in the physical
environment, the readings are replicated to its digital twin and
correlated with measurements from other sensors.

System Testing & Simulation. Digital twins can be leveraged to
perform system tests and simulations. Security analysts can explore
a production clone, instead of relying on documentation and theo-
retical attack vectors. Furthermore, real devices can be tested by
first connecting them in the virtual environment. For instance, if the
real device is connected as a replacement of the existing digital-twin

PLC, the operator could observe the behavior of the new PLC in-
side the virtual environment. Modules to automatically record and
compare specific configurations could be a further extension. More-
over, experimenting with configurations in a virtual environment
provides the possibility to detect problems and incompatibilities
early, without costly setups.

Detecting Misconfigurations. Another use case is to detect mis-
matches of the real environment and the maintained specification.
If, for instance, a physical device is added to the real environment
without adapting the specification, the mismatch could be detected
and reported. The same applies to the case where a physical device
is not consistent with its virtual representation, due to misconfigu-
ration or manipulation by an attacker.

Penetration Testing. Penetration testing of ICSs must be carefully
designed, since network scans such as a ping sweep may cause the
system to behave in an unexpected manner, potentially harming
manufacturing equipment and human health [11]. Thus, preferably
maintenance windows are selected for penetration tests in the live
environment. However, temporarily stopping or limiting the op-
eration of the plant is costly and often not feasible, especially for
critical infrastructures. Building test environments specifically for
conducting penetration testing may also not be a viable alterna-
tive, considering cost and time implications. With a virtual mirror
of the production environment, security analysts could identify
weaknesses and subsequently test countermeasures, before imple-
menting them in production.

3 FRAMEWORK
This section describes CPS Twinning, a digital-twin framework to
support the presented use cases in Section 2.

As the high-level view given in Figure 1 illustrates, the architec-
ture of the framework is composed of two main modules, viz. the
generator and the virtual environment. The generator module takes
engineer- and domain-specific knowledge as input to create the vir-
tual environment. Once the digital twins and the network topology
have been generated, the virtual environment can operate in two
modes. First, the virtual environment provides a simulation mode,
in which the digital twins run independently from the physical
environment. Second, the replication mode records events such
as network traffic from the physical environment and replicates
them in the virtual setup. On top of both modes, the framework
includes multiple modules that can be activated on demand, such
as monitoring, security analysis and intrusion detection. As the
framework should be extensible, we propose a multi-module archi-
tectural approach. In Section 4 we demonstrate a first prototypical
implementation of CPS Twinning.

In the following, a detailed description of each component is
given.

3.1 Input Knowledge
A vital part of the presented idea is to leverage the specifications
of CPSs designed throughout the engineering phases. In this way,
the virtual environment can be generated based on existing arti-
facts, instead of building it from scratch. The advantage of this

2

Physical Environment
User

CPS Twinning Framework

Virtual Environment

Domain Knowledge

Engineer Knowledge

Generator

M
o

n
it

or
in

g

D
ev

ic
e

Te
st

in
g

Se
cu

ri
ty

 &
 S

af
et

y
A

n
al

ys
is

Devices with
Configurations

Network Setup Logic (SFC, ...)

Security and
Safety Rules

Physics Rules

Security and
Safety Rules

Device Templates

Management
Client (Viz)

HMI 1

Motor 1

Sensor 1

HMI 1

PLC 1

PLC 1

B
eh

av
io

r
Le

ar
ni

ng
 &

A

n
al

yt
ic

s

Physical Devices

HMI 1

R
ep

lic
at

io
n

Switch 1

Switch 1

Network Traffic

Sensor Data

Sensor 1

Si
m

ul
at

io
n

Log Files

Motor 1

Figure 1: Architecture of CPS Twinning

approach is that the generation of the virtual environment is au-
tomatic and thereby replacing time-consuming work with an ef-
ficient and scalable solution. Furthermore, this approach yields
reproducible results, meaning that the virtual environment can be
rebuilt identically at any time, as long as the specification exists.
Any changes to the physical environment without adapting the
respective specification results in a divergence from its virtual coun-
terpart. Consequently, the specifications of CPSs should be kept in
sync, fostering a traceable and well documented environment.

Creating and maintaining a detailed specification of a CPS that
enables the generation of a complete virtual replica entails addi-
tional effort. Ideally, the organization already uses standardized
languages (such as AML) to design, exchange, and preserve their
setups.

3.1.1 Engineer Knowledge. Engineer knowledge describes the
information that is unique to the environment at hand. It com-
prises the design of the complete process, including system com-
ponents, network information and the internal behavior of CPSs.
Based on the process definition, the topology of the environment
and logical connections between individual components can be
derived. In essence, the topology is modeled by specifying the com-
ponents (e.g., name, product type, vendor), their corresponding
traits (e.g., I/O channels) and their configuration (e.g., IP and MAC
address).

Furthermore, defining hierarchical relationships within compo-
nents is also an important aspect to consider when modeling a

system. In particular, devices can be examined during operation
to check if they adhere to the specification, e.g., verifying that a
system provides only those services that were defined beforehand.
Moreover, this modeling approach enables CPS Twinning to enforce
fine-grained policies and constraints on all hierarchical levels.

Another aspect to consider is the explicit definition of the com-
munication path from one host to another through logical connec-
tions and endpoints [3]. Besides using these details to generate the
network setup of the virtual environment, this data can also serve
as a basis for implicit security rules. More specifically, the frame-
work could monitor the traffic flow and check if network packets
contain permitted addressing and protocol information. For exam-
ple, a communication path between an HMI and a PLC could be
defined in the specification, including the used application layer
protocol (e.g., Modbus) and the underlying details of the request
protocol data unit (e.g., function code). Consequently, a whitelist for
network-level monitoring can be derived from the explicit mapping
of the network layout.

As far as the behavior of CPSs is concerned, control logic can
also be attached to device specifications. For example, a program
implemented as a sequential function chart (SFC), one of the pro-
gramming languages defined in IEC 61131-3 [13], can be referenced
as a program block of a PLC instance. Since SFC is a standardized
programming language, the referenced code can often be directly
transferred to the physical PLC for execution or at least converted
to vendor-specific dialects. As a result, no additional effort from an
engineering perspective is incurred and realistic simulations can be

3

guaranteed, since the control logic deployed in both environments
(physical and virtual) is identical. Including process information is
also valuable for security-related modules (e.g., IDS).

Finally, we emphasize the explicit integration of safety and secu-
rity rules into the specification. In the course of the process design,
engineers can explicitly state safety rules that define normal opera-
tion. This knowledge enables the framework to determine whether
the process is in a safe state and thereby supplementing safety
instrumented systems (SIS). For example, value limits for device
variables (e.g., min. temperature and max. speed) can be stated.
Conditional statements, as well as comparisons between variables
from different digital twins offer more complex rules.

While engineers provide the knowledge concerning safety risks,
security analysts could contribute rules that indicate benign or
malicious behavior. For example, a rule could be specified that
restricts the network communication between an HMI and a PLC,
depending on the PLC’s internal state.

3.1.2 Domain Knowledge. Domain knowledge refers to informa-
tion that is independent from a specific physical process, meaning
that it can be defined once and then shared among several orga-
nizations. Industrial equipment producers for example, are in the
position to define each of their devices and then provide these arti-
facts in the form of device templates. These templates could include
domain-specific knowledge from experts in the field of mechanical,
electrical, and control engineering. Engineers could then either
reference these ready-made templates or use them as a starting
point to avoid redundant work. Moreover, producers and security
professionals can also provide safety and security rules and update
them continuously. For example, the specification of a tank could
include the maximum allowable fill level, whereas the specification
of a PLC could predefine rules for protecting the integrity of the
firmware.

Previous research on intrusion detection for CPSs focuses also on
attack detection based on the physical properties of a system [34].
In this work, we propose the explicit definition of physics rules
and thereby implicitly defining input that is relevant for the secu-
rity and safety analysis. Consider an attack targeting a chemical
process with the goal to overflow a tank. The attacker attempts to
manipulate the liquid level sensor measurements in order to trick
the control system into filling the tank beyond its limit. By keeping
track of the previous fill and drain control activities, the framework
could calculate an expected liquid level inside the tank by apply-
ing principles of fluid dynamics and compare it to the sensor data.
Inconsistencies would then point to malicious behavior or defects.

3.2 CPS Twinning Framework
The CPS Twinning framework represents the main contribution
of this paper. It includes a generator, the virtual environment and
modules that interact with digital twins. Each component will be
explained further in the following subsections.

3.2.1 Generator. The generator is responsible for transforming
the specification into a virtual environment. As a first step, the
specification is parsed to extract the topological structure of the
network, the devices with their corresponding configuration and
the security and safety rules. After that, the virtual environment

Virtual Component

Program
Execution
(SFC, ...)

Physical
Component
Simulation

Industrial Protocols

Network Layer

Physical
Component

Logical and
Physical

Connections

Figure 2: Layers of CPS Twinning

is built by generating virtual objects and applying their respective
configuration. Finally, the parsed rules are stored in an abstract rep-
resentation for later evaluation by the security and safety analysis
module.

3.2.2 Virtual Environment. This component forms the core of
CPS Twinning and provides the virtualized network infrastructure
as well as a runtime for virtual devices. As a realistic simulation of
the physical process is paramount for the use cases presented in
Section 2, the virtualized CPSs should match their physical counter-
parts as closely as possible. In particular, this includes the execution
of control logic, network protocols, device types and the physical
equipment. Figure 2 depicts an overview of the framework design.
The bottom layer provides a foundation for the CPSs network in-
frastructure. On top of it are industrial protocols that can be used
by digital twins. The digital twins reside one layer above the indus-
trial protocols and can either be emulated by executing the control
logic or simulated in case the twin should replicate only a physical
component.

While the "cyber" part of a CPS can be reconstructed identically
in the virtual environment, physical components, such as sensors
or actuators, as well as their interactions with the real world, must
be simulated. As suggested by Antonioli and Tippenhauer [2], this
can be realized by implementing a file-based storage for sensor and
actuator values, or even by integrating hardware-in-the-loop (HIL)
solutions. In Figure 2, this is represented as the physical component
layer, coexisting with the virtual component layer.

3.2.3 Simulation & Replication. After the automatic generation
of the virtual environment according to the specification and the
configuration of digital twins, the two modes of operation become
available, i.e., replication and simulation.

In simulation mode, the digital twins run independently of their
physical counterparts. Similar to virtual commissioning, this mode
allows users to analyze process changes, test devices or even opti-
mize manufacturing operations. Furthermore, security profession-
als can use this mode to perform security tests within the virtual
environment, thereby avoiding potential implications of testing on
a live system.

The replication mode on the other hand, mirrors data from the
physical environment. Possible data sources to mirror in the virtual
environment are log files, network communication and sensor mea-
surements from the physical environment. Furthermore, sensors

4

could also be directly connected to the CPS Twinning framework.
By means of data diodes or unidirectional gateways, the direction
of the data flow could be restricted to avoid negative effects on
the physical environment. It should also be noted that a direct
connection between the physical and virtual environment is not
a mandatory requirement. For example, data could be collected
offline for a certain period of time and then used in replication
mode. Yet, to ensure that the virtual replica continuously reflects
the physical environment, the use of an automated data replication
method is preferred.

3.2.4 Monitoring. Monitoring the process under control is an
important aspect of the framework. Hence, the monitoring module
provides an interface to assess the process state. In particular, sensor
values and actuator states can be collected and prepared for analysis
and visualization. In this way, the monitoring functionality of CPS
Twinning can assist users in gaining a deeper understanding of the
environment at hand, ensure its proper operation, and facilitate
troubleshooting when issues occur.

Although this module is particularly useful in replication mode,
when the primary objective is to monitor the physical process,
insights into the simulated environment can also be of importance.
More concretely, monitoring the physical process in replication
mode and then switching to simulation mode allows to investigate
a certain state. This approach may provide insight regarding the
root cause that led to an unexpected behavior.

3.2.5 Device Testing. Due to the realistic virtualization of the
physical environment, CPS Twinning facilitates virtual commission-
ing. This opens the possibility to test physical devices by integrating
them into the virtual environment. The process states, as well as the
behavior of the system under test can be monitored to verify that
the system is working as expected. While the setup of an identical
physical test environment is expensive and time-consuming, this
approach may be considered as an attractive alternative to test the
replacement of devices and to perform integration tests.

3.2.6 Security & Safety Analysis. As mentioned in Section 3.1,
security and safety rules can be stated either implicitly or explicitly
in the specification. After these rules have been extracted from the
specification, this module performs an analysis during operation to
detect abnormal conditions of the process in the virtual environ-
ment. Note that in replication mode, the physical environment is
mirrored to its virtual counterpart; thus, it can be assumed that ab-
normalities emerge identically. Besides detecting abnormal process
states during operation, this approach also provides the possibility
to run simulations in the virtual environment in order to test the
setup against violations of the specified rules.

In contrast to a SIS, the framework is able to identify abnormal
conditions by correlating the state of digital twins. It has access to
all states and events inside the virtual environment, and thereby,
can also monitor state changes over time. With this information,
relationships between variables can be analyzed in order to spot
violations of defined safety rules. Moreover, sensors that are inde-
pendent of the process under control may be used as an additional
data source to report their view on the system’s state. The advan-
tage of this approach is that the framework provides a holistic view
of the physical process.

With focus on security, the digital twins and their specification
can serve as a foundation for a behavior-specification-based IDS.
The IDS could take the twins’ state as a primary input for analysis
(host-based), but also audit the network traffic (network-based).
Contrary to a behavior-based IDS, this approach does not require a
training phase and may yield a low false positive rate [23], provided
that the specification is correct and the virtual environment is
consistent with the physical. The specified process knowledge could
also help to detect semantic attacks on control systems, such as
discussed in [6, 25].

3.2.7 Behavior Learning & Analysis. Learning the behavior of
the virtual environment serves as valuable input for process opti-
mization and anomaly detection. It may be possible to track down
process bottlenecks or other factors that negatively affect the pro-
cess or the quality of manufactured products. Furthermore, typi-
cal Industry 4.0 use cases, such as predicting the manufacturing
throughput or the health of systems [17], may be also implemented
on top of this module. With CPS Twinning, analysts can focus on
learning algorithms and data interpretation, while the setup and
monitoring is handled by the framework.

3.3 Management Client
Since users need the possibility to manage and control the virtual
environment, a unified interface that provides access to all modules
of the framework is required. However, protecting the framework
from unauthorized users is essential. If adversaries gain access
to CPS Twinning, they could obtain a detailed description of the
physical environment and identify weak points of systems. This
information can then be used to discover attack paths to desired tar-
gets. Likewise, the security and safety rules may inform an attacker
about controls that are covered by the framework.

In addition, the management client may also provide visualiza-
tion features to represent digital twins graphically.

4 PROOF OF CONCEPT
In this section we demonstrate how a physical environment can be
modeled, and we present a first implementation of the introduced
framework. While we can only show excerpts in this section, the
complete prototype and scenario files can be found on GitHub1.

A minimal setup serves as our physical environment, including
a Siemens S7-1200 PLC, an HMI, a network switch to connect both
components, and a conveyor belt that is driven by a motor. While
the motor is operated by the PLC, the HMI is used to monitor and
control the PLC via the Modbus TCP/IP protocol. The HMI (i.e.,
Modbus master) allows users to write holding registers on the PLC
(i.e., Modbus slave) in order to start/stop the conveyor and to set
the velocity respectively.

The engineer- and domain-knowledge (cf. Section 3.1) is themain
input to create a virtual environment. To formulate the specification,
we chose the data format AML [10]. AML aims to support the
complete engineering chain of production systems by offering a
standardized data exchange format for most of the artifacts (e.g.,
technical, topological, and control related information) within the
engineering process. This XML-based data format considers both,

1https://github.com/sbaresearch/cps-twinning

5

https://github.com/sbaresearch/cps-twinning

a syntactical and a semantic level to describe the data objects, and
furthermore, is flexible with respect to extensions and changes,
which makes it a fitting candidate to model the required knowledge
for our framework.

The core of the CPS Twinning framework has been developed in
Python and is based on existing components, such as Mininet [16].
Mininet allows users to virtualize network environments and it is
extensible, so we were able to build the CPS Twinning layers on
top. Apart from Mininet, the framework also integrates the iec2c
transcompiler that is included in theMatIEC project2. This compiler
translates codewritten in a programming language of the IEC 61131-
3 standard to C code. Further, we implemented a custom runtime to
execute the code generated by iec2c in the context of a digital twin,
enabling CPS Twinning to emulate the internal behavior of PLCs.

As a minimum requirement, the prototype depends upon the ex-
istence of an artifact that describes the characteristics of the digital
twins. The prototype currently supports the generation of PLCs,
HMIs, components without a network interface (e.g., motor) that
only monitor the state of other digital twins, and default Mininet
network nodes (e.g., switches). Moreover, the specification parser
has been designed to extract data from an AML artifact describing
the setup that will be presented in the following section. Thus, we
expect users to either adapt the provided AML parser to their needs
or write their own parser implementation for their preferred data
format.

4.1 Scenario Specification
In the following, we explain the relevant parts of the scenario
specification.

Figure 3 illustrates the exemplary physical process. For a better
understanding, we describe the main elements of the specification
and show excerpts of the artifact alongside.

When modeling the communication of hosts in AML, there are
at least two views that can be defined, viz. the physical and logical
network [3]. As an example for the physical network, Wire1 con-
nects the physical endpoint of HMI1 with the physical endpoint of
Switch1. The definition of the physical endpoint of HMI1, including
a part of the network configuration of the HMI (i.e., IP address), can
be seen in Listing 1. Moreover, the excerpt shows a logical device
named HMI that contains a logical endpoint and the HMI variable
Velocity.

1 <InternalElement Name="HMI1" RefBase="/Siemens HMI">

2 <InternalElement Name="Portlist" ID="28d...">

3 <ExternalInterface Name="Endpoint" ID="fb1...">

4 <Attribute Name="ip">

5 <Description>IP address</Description>

6 <Value>192.168.0.2</Value>

7 </Attribute>

8 ...

9

10 <InternalElement Name="HMI" ID="068..." RefBase="/HMI">

11 <ExternalInterface Name="Endpoint" ID="068..." />

12 <ExternalInterface Name="Velocity" ID="da4..."

RefBaseClassPath="/HMIVariableInterface">↪→

13 <Attribute Name="type">

14 <Value>int</Value>

2https://bitbucket.org/mjsousa/matiec

15 </Attribute>

16 ...

Listing 1: Excerpt of the HMI specification

As shown in Listing 2, Wire1 is used to connect HMI1 to Switch1.
In AML, a link can be modeled by using the InternalLink ele-
ment [3]. Listing 2 depicts how the endpoints of both devices can
be referenced via the RefPartnerSideA and RefPartnerSideB at-
tributes. Note that the attribute value of RefPartnerSideB points
to the physical endpoint of HMI1 (cf. Listing 1).

1 <InternalElement Name="Wire1" RefBase="/PhysicalConnection"

ID="652...">↪→

2 <ExternalInterface Name="EP1" ID="e5b..." />

3 <ExternalInterface Name="EP2" ID="857..." />

4 <InternalLink Name="Switch1 - HMI1"

RefPartnerSideA="{a29...}:Endpoint1"

RefPartnerSideB="{28d...}:Endpoint" />

↪→

↪→

5 ...

Listing 2: Excerpt of a wire specification

In contrast to the physical network, the logical network models
the exchange of data among hosts from an abstract perspective [3].
As Listing 3 shows, a logical connection exists between the HMI and
the PLC, since both hosts exchange data via the network. In addition,
the element named LogicalConnectionA includes protocol data
units (PDU) that specify which PLC and HMI tags are exchanged.
For instance, the PDU named VelocityModbusTCPDataPacket es-
tablishes a link between the Velocity tag of PLC1 and HMI1.

1 <InternalElement Name="LogicalNetwork" ID="c51...">

2 <InternalElement Name="LogicalConnectionA"

RefBaseSystemUnitPath="/LogicalConnection" ID="82b...">↪→

3 <ExternalInterface Name="EP1" ID="ac0..." />

4 <ExternalInterface Name="EP2" ID="cb2..." />

5 <InternalElement Name="VelocityModbusTCPDataPacket"

ID="fe0...">↪→

6 <InternalLink Name="PLC1 Velocity - HMI1 Velocity"

RefPartnerSideA="{133...}:Velocity"

RefPartnerSideB="{068...}:Velocity" />

↪→

↪→

7 <RoleRequirements

RefBaseRoleClassPath="/ModbusTCPDataPacket" />↪→

8 </InternalElement>

9 ...

Listing 3: Excerpt of the logical network specification

Similar to HMI1, PLC1 is specified as a physical device that in-
cludes a logical device. The PLC code has been implemented as a
SFC and, as shown in Listing 4, is referenced directly within the
AML artifact. A snippet of the control logic is also depicted in Fig-
ure 3, represented as a ladder diagram (LD). As can be seen in the
LD, the start/stop tags control the output Q0.0, which in turn drives
the motor control block that triggers the pulse train output (PTO).

6

https://bitbucket.org/mjsousa/matiec

PLC Program

Outputs

Modbus Slave

PLC1

HMI Program

HMI1

Modbus Master

Start
Motor

Stop
Motor

20
Velocity

%M0.0
Start conveyor

belt

%M0.1
Stop conveyor

belt

%Q0.0
Conveyor belt

%Q0.0
Conveyor belt

%Q1.0

Motor1

Switch1

Wire1 Wire2

Physical connection

Physical endpoint

LogicalConnectionA

Logical connection

Logical endpoint

Physical device

Logical device

Motor Control

Enable

Velocity

%Q0.0

%MW0

PTO %Q1.0

Figure 3: Illustration of the artifact that specifies the exemplary physical process

1 <InternalElement Name="Program" ID="133..." RefBase="/Main">

2 <ExternalInterface Name="OB1" RefBase="/PLCopenXMLInterface"

ID="2e2...">↪→

3 <Attribute Name="refURI" AttributeDataType="xs:anyURI">

4 <Value>file:///Source/ConveyorSystem_SFC.xml</Value>

5 </Attribute>

6 ...

Listing 4: Referencing PLC code (SFC) in AML

At this point, we have introduced the engineer knowledge about
the devices with their configuration, the network setup (physical
and logical), as well as the control logic. When comparing it to
Figure 1, it is evident that the specification of security and safety
rules is still lacking. For this prototypical implementation of CPS
Twinning, we want to demonstrate how a safety and a security rule
can be defined.

Safety Rule. In this example, we want to ensure that the conveyor
speed does not exceed a certain threshold. This safety rule could
either be stated by the vendor of the motor or by a person designing
the process. In order to define this rule in the specification, we used
the interface class VariableInterface to reference the Velocity
variable of the PLC program and then added a RequiredMaxValue
constraint (cf. Listing 5). Since variables of the PLC code can be
stated in the specification, the person defining the rule is not re-
quired to access the code or understand the underlying logic of the
PLC program.

1 <ExternalInterface Name="Velocity" RefBase="/VariableInterface">

2 <Attribute Name="refURI">

3 <Value>file:///Source/ConveyorSystem_SFC.xml#Velocity</Value>

4 <Constraint Name="Safety Rule Motor">

5 <OrdinalScaledType>

6 <RequiredMaxValue>60</RequiredMaxValue>

7 </OrdinalScaledType>

8 ...

Listing 5: Specification of the safety rule, defining a maxi-
mum speed of the motor

Security Rule. Stuxnet demonstrated how susceptible ICSs are to
data manipulation. Manipulated sensors or controllers reporting
incorrect values can disrupt the entire process and may lead to
unsafe states. Approaches to mitigate this risk include the use of
independent sensors, PLC integrity checks, and consistency checks
throughout the control network. In this example, we want to show
how a consistency check can be modeled in AML, so that the rule
can be evaluated during operation by CPS Twinning.

Recall that the HMI displays the motor status (started/stopped),
according to the operator’s action. An attacker who gains access
to the network could launch a man-in-the-middle attack (MITM)
in order to manipulate system states. For example, a successful
spoofing attack could cause the HMI to display an incorrect status
or trick the PLC into starting the motor, without the HMI actually
sending the command.

To detect inconsistent states of the HMI and the PLC, we intro-
duce a VariableLinkConstraint that expects equality between
the variables of the two devices (cf. Listing 6). In addition, we could
also connect an independent physical sensor (outside the process
loop) to the CPS Twinning framework, and take its measurements
for comparison.

1 <InternalElement Name="VelocityConstraint" ID="e0b...">

2 <Attribute Name="operator" AttributeDataType="xs:string">

3 <Value>equals</Value>

4 </Attribute>

5 <InternalLink Name="VelocityConstraint PLC1 - HMI1"

RefPartnerSideA="{133...}:Velocity"

RefPartnerSideB="{068...}:Velocity" />

↪→

↪→

7

6 <RoleRequirements

RefBaseRoleClassPath="/VariableLinkConstraintRoleClass" />↪→

7 </InternalElement>

Listing 6: Specification of the security rule, defining that the
values of both variables must be equal

4.2 Virtual Environment Generation
This section describes step-by-step how the prototype generates
the virtual environment based on knowledge sources.

The creation process is initiated by executing the custom com-
mand twinning via Mininet’s command-line interface (CLI). This
particular command expects the path to the AML artifact as an ar-
gument for the parser. After invoking the AML parser, the topology
is generated and the extracted rules are provided to the security
and safety analysis module.

As already mentioned in Section 4, we used the API of Mininet to
implement the basic network layer of the framework. Each imple-
mented digital twin class that requires network capabilities inherits
from Mininet’s Host class, allowing a seamless integration into
Mininet. As a result, the predefined Mininet commands (e.g., nodes
to list all hosts) can also be used for the generated digital twins.
Owing to Mininet’s virtualization approach, each digital twin of the
network topology is a process that is running in its own network
namespace [16].

When instantiating a PLC node, the framework spawns another
process in the twin’s namespace to run the program that emulates
the internal behavior of the PLC. This particular Python program
starts the build process of the PLC code and subsequently manages
its execution. Depending on the specification, it is also able to
emulate a Modbus slave. Furthermore, the PLC emulator starts a
listener to exchange data between the Mininet CLI and the process
that emulates the PLC. In this way, users are able to view metadata
about the PLC program (e.g., variable types) and get/set a tag’s
value. Listing 7 provides an overview of the supported commands.

Compared to Mininet hosts, the HMI digital twins also support
the show_tags, get_tag and set_tag commands. If one of the
commands to get/set a tag are executed, the framework spawns a
Modbus master to communicate with the PLC.

In the case of virtually cloning physical devices that require no
network capability (e.g., motors), instances of the corresponding
class (e.g., Motor) are created, but not added to the virtualized
network. To simulate the internal behavior of these devices, the
instances monitor specific tags of connected digital twins, such as
a PLC.

Finally, the security and safety analysis module is initialized with
the parsed rules. This component monitors specific variables of
digital twins and issues alerts in case of a detected rule violation.
In this first version of CPS Twinning, alerts are logged to a file.

1 mininet> twinning /home/user/ConveyorSystem.aml
2 mininet> nodes
3 available nodes are:
4 HMI1 PLC1 Switch1 c0
5 mininet> links
6 Switch1-eth1<->HMI1-eth0 (OK OK)
7 Switch1-eth2<->PLC1-eth0 (OK OK)

8 mininet> show_tags PLC1
9 Name |Class |Type
10 ---------------------------------------
11 ENABLE |var |bool
12 PTO |var |bool
13 Q10 |out |bool
14 Q00 |out |bool
15 START |mem |bool
16 STOP |mem |bool
17 VELOCITY |mem |int
18 ...
19 mininet> get_tag PLC1 START
20 False
21 mininet> set_tag PLC1 START True
22 mininet> get_tag PLC1 START
23 True

Listing 7: Output of commands that can be used for a PLC
digital twin

4.3 Simulation & Results
At this point, we want to test the virtual environment generated
from specification in the previous section. First, we execute simple
actions in the physical as well as in the virtual environment. There-
after, we compare the outcome of both runs to see how similar the
results are. Second, we execute a MITM attack inside the virtual
environment, to test the detection of violated security and safety
rules, based on the examples given in Section 4.1, Safety Rule and
Security Rule.

4.3.1 Environment Comparison. For the comparison, we trigger
all user commands via the HMI in the physical environment and
through variable changes (e.g., set_tag HMI1 Start True) on the
digital twin respectively. The simple process steps are as follows:
(1) Initially, the motor is off, waiting for the HMI1 to send a start
command. Hence, this is also the first action in the simulated run.
(2) Next, we adapt the velocity of the conveyor belt to a value of
19 and 21 afterwards. (3) Finally, we stop the conveyor belt after a
short period.

In order to observe the behavior and events, we captured the
network traffic in the virtual and physical environment. The net-
work capture from the physical environment contains 46 packets,
whereas the capture from the virtual environment contains 50. We
excluded unrelated traffic, such as DHCP and DNS, from the traffic
dump of the physical environment. The IP addresses are identical
in both environments, as defined in our AML artifact. Furthermore,
the process steps match in both environments, including our manu-
ally triggered actions, as well as the responses sent by the Modbus
slave. Going into more detail, we compare the TCP stream of the
velocity change inside the physical network (cf. Listing 8) to the
virtual environment (cf. Listing 9).

Line 5 of Listing 8 and Listing 9 reflects the actualModbus request
to write multiple registers, setting register number 2 to the value 19.
The Modbus payload is identical in both environments, but there is
a difference in the timestamps, due to the fact that we triggered the
commands manually. We can also see that the response times inside
the virtual environment are lower than in our physical setup. The
network stack of our virtual environment and the physical devices
is not identical, hence, there are slight differences in the TCP traffic.

8

Our digital twin for the HMI responds with an ACK packet (Listing 9,
line 6) to a Modbus query before sending the Modbus response. The
HMI of the physical environment only sends the Modbus response
(Listing 8, line 6). Similar, the Siemens PLC sends a RST packet after
FIN to close the connection (Listing 8, line 10).

This short example demonstrated, that the automatically gener-
ated digital twins behave according to the specification. The digital
twins, including their network configuration match the physical
environment, viz. the physical environment matches the specifica-
tion. With focus on the control logic, we did not detect deviations
in the control flow as the PLC’s digital twin runs the same code as
its physical counterpart. However, there are minor differences in
the network traffic, due to varying implementations of the network
stack.

1 |Time | 192.168.0.2 <> 192.168.0.1
2 |12.767734 | --> | TCP: 49796 - 502 [SYN] Seq=0 MSS=1460
3 |12.768956 | <-- | TCP: 502 - 49796 [SYN, ACK] Seq=0 Ack=1 MSS=1460
4 |12.768987 | --> | TCP: 49796 - 502 [ACK] Seq=1 Ack=1
5 |12.769628 | --> | Modbus/TCP: Query: Func: 16 (Register 2: 19)
6 |12.787200 | <-- | Modbus/TCP: Response: Func: 16
7 |12.787291 | --> | TCP: 49796 - 502 [ACK] Seq=16 Ack=13
8 |12.787620 | --> | TCP: 49796 - 502 [FIN, ACK] Seq=16 Ack=13
9 |12.791942 | <-- | TCP: 502 - 49796 [ACK] Seq=13 Ack=17
10 |12.802970 | <-- | TCP: 502 - 49796 [RST, ACK] Seq=13 Ack=17

Listing 8: Excerpt of the Modbus TCP/IP network traffic in
the physical environment

1 |Time | 192.168.0.2 <> 192.168.0.1
2 |6.048040 | --> | TCP: 52606 - 502 [SYN] Seq=0 MSS=1460
3 |6.050265 | <-- | TCP: 502 - 52606 [SYN, ACK] Seq=0 Ack=1 MSS=1460
4 |6.050279 | --> | TCP: 52606 - 502 [ACK] Seq=1 Ack=1
5 |6.053310 | --> | Modbus/TCP: Query: Func: 16 (Register 2: 19)
6 |6.053515 | <-- | TCP: 502 - 52606 [ACK] Seq=1 Ack=16
7 |6.058982 | <-- | Modbus/TCP: Response: Func: 16
8 |6.058995 | --> | TCP: 52606 - 502 [ACK] Seq=16 Ack=13
9 |6.061786 | --> | TCP: 52606 - 502 [FIN, ACK] Seq=16 Ack=13
10 |6.068576 | <-- | TCP: 502 - 52606 [FIN, ACK] Seq=13 Ack=17
11 |6.068586 | --> | TCP: 52606 - 502 [ACK] Seq=17 Ack=14

Listing 9: Excerpt of the Modbus TCP/IP network traffic in
the virtual environment

4.3.2 Detecting Rule Violations. We now evaluate the effective-
ness of the security and safety analysis module with regards to
detecting violations of the specified rules. To validate our approach,
we launched an ARP spoofing attack in the simulated virtual en-
vironment to position the attacker between the HMI and the PLC
(MITM). When the Modbus master (HMI) sends a command to the
Modbus slave (PLC), the attacker intercepts the traffic and manipu-
lates the request. In our attack scenario, the operator attempts to
set the velocity of the conveyor to the value of 20 by using the HMI.
The Modbus master then sends a request (FC: 16) to write the new
velocity value to the respective register of the slave. However, the
attacker intercepts the traffic between the two parties and modifies
the packet’s payload in order to set the velocity to 100. Listing 10
depicts an excerpt of the intercepted network traffic.

1 |Time | Flow | Info
2 |0.000000 | A -> P | ARP: 192.168.0.2 is at A
3 |0.000387 | A -> H | ARP: 192.168.0.1 is at A
4 ...
5 |29.44686 | H -> A | TCP: 34976 - 502 [SYN]
6 |29.44689 | A -> P | TCP Out-Of-Order 34976 - 502 [SYN]
7 ...
8 |29.45431 | H -> A | Modbus/TCP: Query: Func: 16 (Register 2: 20)
9 |29.45432 | A -> P | TCP Retr.: Query: Func: 16 (Register 2: 100)
10 ...
11 |29.47340 | P -> A | Modbus/TCP: Response: Func: 16
12 |29.47341 | A -> H | TCP Retr.: Response: Func: 16
13 ...

Listing 10: Excerpt of the intercepted network traffic be-
tween the PLC (P) and the HMI (H) from the attacker’s (A)
point of view

Recall that according to the specification, the velocity must not
exceed the threshold value of 60 (cf. Listing 5) and the HMI velocity
tag value must be equal to the corresponding tag of the PLC (cf. List-
ing 6). As a result, if the attacker succeeds in tampering the velocity
value, the security and safety analysis module of CPS Twinning
should raise two alarms, since both constraints are violated.

1 INFO:root:'Velocity' value changed 0 -> 20 in device 'HMI1'.
2 INFO:root:'VELOCITY' value changed 0 -> 100 in device 'PLC1'.
3 WARNING:root:ALERT! 'PLC1' tag [Velocity=100] exceeds max value of

60.↪→

4 WARNING:root:ALERT! 'HMI1' tag [Velocity=20] does not equal 'PLC1'

tag [Velocity=100].↪→

Listing 11: Logging output of CPS Twinning

As can be seen in Listing 11, the framework tracks state changes
and yields a warning if a violation of a specified rule occurs. The
logged statements could signal plant operators or security profes-
sionals that a system is in an abnormal condition and requires
investigation.

As already stated, the MITM attack has been carried out in the
virtual environment, meaning that we tested the detection of rule
violations when running CPS Twinning in simulation mode. How-
ever, the result in replication mode would be identical, provided
that all states of the physical production system are replicated.
Furthermore, the absence of the attacker’s MAC address in the
specification would result in a mismatch between the physical and
virtual environment; hence, exposing the attack.

It should also be mentioned that the presented attack scenario
can be mitigated by specifying network rules (e.g., an IP to MAC
address mapping already exists in the specification). However, we
chose the aforementioned rules intentionally to demonstrate how
the state of digital twins can be audited.

5 RELATEDWORK
Previous research can be divided into (i) the simulation of CPSs,
(ii) process-aware intrusion detection systems, and (iii) the model-
ing of digital twins.

Several studies have attempted to simulate ICSs in order to as-
sess their level of security [2, 7, 9, 36]. Similar to our approach,

9

MiniCPS [2] is also based on Mininet to emulate the network layer
for simulated CPSs. However, there are several fundamental distinc-
tions between MiniCPS and CPS Twinning. First of all, MiniCPS
aims to provide researchers a virtual environment to test CPSs
network setups, explore different attack scenarios, and evaluate
countermeasures. While CPS Twinning also supports all of the
aforementioned use cases, the focus of our work lies on generating
digital twins in order to virtually replicate the physical process as
close as possible. Furthermore, we propose a framework with secu-
rity modules beyond network analysis, and present a first prototype,
including security and safety rules in simulation mode. Second, CPS
Twinning has been designed to generate the virtual environment
from specification. As a result, the framework allows a seamless
integration into the system engineering process and can further be
maintained with ease by updating the specification. Third, in [2],
the authors demonstrate how a MITM attack can be prevented by
implementing an ARP spoofing detection algorithm in a custom
software-defined networking (SDN) controller. In contrast, we show
in Section 4.3.2 how such an attack can be detected by monitor-
ing the states of digital twins. Finally, it is also worth highlighting
that there are substantial differences in the implementation of both
frameworks. While in MiniCPS the emulation of a PLC requires
users to port the PLC code to Python, our presented prototype
supports direct PLC code execution. As far as the implementation
of industrial protocols is concerned, MiniCPS supports Modbus
TCP/IP and EtherNet/IP, whereas CPS Twinning is currently lim-
ited to Modbus TCP/IP.

Dong et al. [9] investigate how SDN can be leveraged to increase
the resilience of smart grids and which security risks are involved
with this approach. In their work, they describe several use cases
where SDN can be applied as a countermeasure against attacks, such
as a distributed denial-of-service (DDoS) or packet delay attack.
Further, the authors developed a smart gird test bed to validate their
proposed approach. This particular test bed is based on Mininet and
PowerWorld3, a power system simulator. Contrary to [9], the paper
at hand does neither focus specifically on the resilience of CPSs, nor
does the prototype presented in Section 4 support the generation
of digital twins that would provide a complete virtual replica of a
smart grid. However, as the work by Dong et al. [9] demonstrates,
Mininet is also suitable to be used as part of a SDN-based smart grid
simulator; thus, enhancing the prototype to expand the concept of
digital twins also to smart grids may constitute a valuable extension.

Works such as [25] and [8] propose a process-aware intrusion
detection technique by utilizing the knowledge of engineers who
developed the system. In [25], the authors present a network-based
IDS framework for SCADA systems that is able to take process
variable values into account (e.g., temperature). In their work, they
propose a language that allows engineers to express normal values
of process variables. While defining these constraints with their
proposed language seems trivial, this requirement can be consid-
ered as an activity that does not naturally fit into the engineering
workflow and may entail additional effort. In contrast, we propose
the implicit or explicit definition of these constraints in engineering
data formats, such as AML. While efforts have been made to auto-
mate the task of creating the rules that specify a system’s correct

3https://www.powerworld.com/

behavior [5], manual work obviously remains if the documentation
is missing or other sources provide incomplete information. As a
result, we argue that security knowledge about a CPS should be
defined already in early phases of the system engineering process
and then maintained consistently throughout the system’s lifecycle.

Other studies related to our work concentrate onmodeling [1, 28]
and implementing digital twins [32, 35]. It is worth mentioning that
Schroeder et al. [28] also use AML to model digital twins. However,
their work focuses on the data exchange between the digital twin
and other systems.

6 CONCLUSIONS
In this paper, we have presented CPS Twinning, a framework to gen-
erate and execute digital twins, and furthermore, we have demon-
strated the process in an industrial scenario. It covers a novel ap-
proach to automatically generate virtual environments completely
from specification. As a result, this approach is reusable, consistent
and guarantees a complete reflection of the specification.

With this approach, organizations that already use specification
languages in their engineering process can build a digital environ-
ment without any or little additional effort. Tooling support and
device templates could help in reaching a consistent specification
in general. It further opens the possibility to recreate and experi-
ment with an identical CPS environment, just by exchanging its
specification.

From a security perspective, an identical (in terms of the system’s
specification), simulated environment can be freely explored and
tested by security experts, without endangering the production
environment. However, the security possibilities go beyond that. On
top of the virtualization engine, security modules support experts
in protecting the environment. In a proof of concept, we have
demonstrated how the framework detects a MITM attack, targeting
the manipulation of a motor’s speed.

Current limitations of the prototype include a limited support of
data types in PLC code (data types other than Boolean and integer
are not available) and Modbus function codes. There are also some
steps, which have been triggered manually, but could be integrated
in a complete automation pipeline. For example, the translation of
vendor-specific function blocks.

While the paper at hand has introduced the idea of the frame-
work and a prototype has demonstrated the complete process, from
specification to detection, other features and modules have not
been implemented yet.

As far as the prototype of the CPS Twinning framework is con-
cerned, the implementation thereof raised several issues that are
worth pointing out. First, the underlying idea of this work relies
on the assumption that a specification of CPSs exists in a level of
detail that allows the generation of the virtual environment. Ideally,
artifacts are maintained throughout the lifecycle of CPSs and are
already suitable to be used as an input for CPS Twinning, which in
practice may not be the case. If artifacts are missing or incomplete,
users are required to manually create the specification before us-
ing the framework. Since this process is error-prone and involves
manual work, integrating a specification mining approach into CPS
Twinning would provide valuable support. Second, achieving an

10

https://www.powerworld.com/

implementation of digital twins that provides an identical repli-
cation of their physical counterparts is challenging. For example,
differences in the network stack implementation may manifest in
the network traffic itself (cf. Section 4.3.1) and the timing of actions,
causing digital twins to be out of sync with their physical counter-
parts. Third, implementing a framework that is capable of closely
mirroring CPSs is a work-intensive task, even if some components
that facilitate the development (e.g., Mininet) are already publicly
available.

As future work, we want to focus on the replication mode of
the framework, i.e., mirroring the state of physical systems to their
corresponding digital twins. To validate our approach, we plan to
launch a MITM attack in the real environment for the purpose of
detecting deviations in the behavior of digital twins to spot attacks
as early as possible.

Moreover, we aim to address the issue of non-existent or in-
complete artifacts by mining specifications. Passive sniffing, device
fingerprinting or extracting data from system logs and documen-
tation may be possible approaches that would help users to get
started with CPS Twinning if no such specification exists initially.

Further topics include, e.g., a modeling language for security and
safety rules, exploring device templates with security rules, behav-
ior learning and analysis in combination with anomaly detection, a
client to visualize results and to manage the framework, as well as
supporting additional industrial protocols.

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digital,
Business and Enterprise and the National Foundation for Research,
Technology and Development, and COMET K1, FFG - Austrian Re-
search Promotion Agency is gratefully acknowledged. Furthermore,
this work was supported by the Austrian Science Fund (FWF) and
netidee SCIENCE under grant P30437-N31.

REFERENCES
[1] K. M. Alam and A. El Saddik. 2017. C2PS: A Digital Twin Architecture Reference

Model for the Cloud-Based Cyber-Physical Systems. IEEE Access 5 (2017), 2050–
2062. https://doi.org/10.1109/ACCESS.2017.2657006

[2] Daniele Antonioli and Nils Ole Tippenhauer. 2015. MiniCPS: A Toolkit for
Security Research on CPS Networks. In Proceedings of the First ACM Workshop
on Cyber-Physical Systems-Security and PrivaCy (CPS-SPC ’15). ACM, NY, 91–100.
https://doi.org/10.1145/2808705.2808715

[3] AutomationML. 2014. Whitepaper: Communication. Technical Report V_1.0.0.
AutomationML consortium.

[4] Radhakisan Baheti and Helen Gill. 2011. Cyber-physical systems. The impact of
control technology 12 (2011), 161–166.

[5] M. Caselli, Emmanuele Zambon, Johanna Amann, Robin Sommer, and Frank
Kargl. 2016. Specification Mining for Intrusion Detection in Networked Control
Systems. USENIX Association, 791–806.

[6] Marco Caselli, Emmanuele Zambon, and Frank Kargl. 2015. Sequence-aware
Intrusion Detection in Industrial Control Systems. In Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security (CPSS ’15). ACM, NY, 13–24. https:
//doi.org/10.1145/2732198.2732200

[7] Rohan Chabukswar, Bruno Sinopoli, Gabor Karsai, Annarita Giani, Himanshu
Neema, and Andrew Davis. 2010. Simulation of Network Attacks on SCADA
Systems. In First Workshop on Secure Control Systems, Cyber Physical Systems
Week 2010. http://www.truststc.org/pubs/693.html

[8] Justyna J. Chromik, Anne Remke, and Boudewijn R. Haverkort. 2016. What’s
under the hood? Improving SCADA security with process awareness. IEEE. https:
//doi.org/10.1109/CPSRSG.2016.7684100 eemcs-eprint-27160.

[9] Xinshu Dong, Hui Lin, Rui Tan, Ravishankar K. Iyer, and Zbigniew Kalbarczyk.
2015. Software-Defined Networking for Smart Grid Resilience: Opportunities
and Challenges. In Proceedings of the 1st ACMWorkshop on Cyber-Physical System

Security (CPSS ’15). ACM, New York, NY, USA, 61–68. https://doi.org/10.1145/
2732198.2732203

[10] R. Drath, A. Luder, J. Peschke, and L. Hundt. 2008. AutomationML - the glue
for seamless automation engineering. In 2008 IEEE International Conference on
Emerging Technologies and Factory Automation. 616–623. https://doi.org/10.1109/
ETFA.2008.4638461

[11] David Duggan, Michael Berg, John Dillinger, and Jason Stamp. 2005. Penetration
testing of industrial control systems. Sandia National Laboratories (2005).

[12] B. Genge, C. Siaterlis, and G. Karopoulos. 2013. Data fusion-base anomaly de-
tection in networked critical infrastructures. In 2013 43rd Annual IEEE/IFIP Con-
ference on Dependable Systems and Networks Workshop (DSN-W). 1–8. https:
//doi.org/10.1109/DSNW.2013.6615505

[13] IEC. 2003. 61131-3: Programmable controllers – Part 3: Programming languages.
International Standard, Second Edition, International Electrotechnical Commission,
Geneva 1 (2003).

[14] IEC. 2009. 62443: Industrial communication networks – Network and system
security. International Standard, First Edition, International Electrotechnical Com-
mission, Geneva 1 (2009).

[15] Mikel Iturbe, Iñaki Garitano, Urko Zurutuza, and Roberto Uribeetxeberria. 2017.
Towards Large-Scale, Heterogeneous Anomaly Detection Systems in Industrial
Networks: A Survey of Current Trends. Security and Communication Networks
(2017).

[16] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software-defined Networks. In Proceedings of the 9th ACM
SIGCOMMWorkshop on Hot Topics in Networks (Hotnets-IX). ACM, NY, Article
19, 6 pages. https://doi.org/10.1145/1868447.1868466

[17] Jay Lee, Edzel Lapira, Behrad Bagheri, and Hung an Kao. 2013. Recent advances
and trends in predictive manufacturing systems in big data environment. Manu-
facturing Letters 1, 1 (2013), 38 – 41. https://doi.org/10.1016/j.mfglet.2013.09.005

[18] Mark Luchs and Christian Doerr. 2017. Last Line of Defense: A Novel IDS Approach
Against Advanced Threats in Industrial Control Systems. Springer, Cham, 141–160.
https://doi.org/10.1007/978-3-319-60876-1_7

[19] Arndt Lüder, Nicole Schmidt, Kristofer Hell, Hannes Röpke, and Jacek Zawisza.
2017. Fundamentals of Artifact Reuse in CPPS. Springer, Cham, 113–138. https:
//doi.org/10.1007/978-3-319-56345-9_5

[20] Arndt Lüder, Nicole Schmidt, Kristofer Hell, Hannes Röpke, and Jacek Zawisza.
2017. Identification of Artifacts in Life Cycle Phases of CPPS. Springer, Cham,
139–167. https://doi.org/10.1007/978-3-319-56345-9_6

[21] S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A. R. Sadeghi, M. Maniatakos,
and R. Karri. 2016. The Cybersecurity Landscape in Industrial Control Systems.
Proc. IEEE 104, 5 (May 2016), 1039–1057. https://doi.org/10.1109/JPROC.2015.
2512235

[22] Bill Miller and Dale Rowe. 2012. A Survey of SCADA and Critical Infrastructure
Incidents. In Proceedings of the 1st Annual Conference on Research in Information
Technology (RIIT ’12). ACM, NY, 51–56. https://doi.org/10.1145/2380790.2380805

[23] Robert Mitchell and Ing-Ray Chen. 2014. A Survey of Intrusion Detection Tech-
niques for Cyber-physical Systems. ACM Comput. Surv. 46, 4, Article 55 (March
2014), 29 pages. https://doi.org/10.1145/2542049

[24] Thomas Morris and Wei Gao. 2014. Industrial Control System Traffic Data Sets for
Intrusion Detection Research. Springer, Berlin, 65–78. https://doi.org/10.1007/
978-3-662-45355-1_5

[25] Jeyasingam Nivethan and Mauricio Papa. 2016. A SCADA Intrusion Detection
Framework That Incorporates Process Semantics. In Proceedings of the 11th
Annual Cyber and Information Security Research Conference (CISRC ’16). ACM,
NY, Article 6, 5 pages. https://doi.org/10.1145/2897795.2897814

[26] Roland Rosen, Georg von Wichert, George Lo, and Kurt D. Bettenhausen. 2015.
About The Importance of Autonomy and Digital Twins for the Future of Manu-
facturing. IFAC-PapersOnLine 48, 3 (2015), 567 – 572. https://doi.org/10.1016/j.
ifacol.2015.06.141

[27] Juan E. Rubio, Cristina Alcaraz, Rodrigo Roman, and Javier Lopez. 2017. Analysis
of Intrusion Detection Systems in Industrial Ecosystems. In 14th International
Conference on Security and Cryptography (SECRYPT 2017).

[28] Greyce N. Schroeder, Charles Steinmetz, Carlos E. Pereira, and Danubia B. Espin-
dola. 2016. Digital Twin Data Modeling with AutomationML and a Communica-
tion Methodology for Data Exchange. IFAC-PapersOnLine 49, 30 (2016), 12 – 17.
https://doi.org/10.1016/j.ifacol.2016.11.115

[29] Mike Shafto, Mike Conroy, Rich Doyle, Ed Glaessgen, Chris Kemp, Jacqueline
LeMoigne, and Lui Wang. 2010. Draft modeling, simulation, information tech-
nology & processing roadmap. Technology Area 11 (2010).

[30] Jill Slay and Michael Miller. 2008. Lessons Learned from the Maroochy Water
Breach. In Critical Infrastructure Protection, Eric Goetz and Sujeet Shenoi (Eds.).
Springer, Boston, 73–82.

[31] Keith Stouffer, Victoria Pillitteri, Suzanne Lightman, Marshall Abrams, and Adam
Hahn. 2015. Guide to Industrial Control Systems (ICS) Security. NIST special
publication 800, 82r2 (Jun 2015). https://doi.org/10.6028/nist.sp.800-82r2

[32] Thomas H.-J. Uhlemann, Christian Lehmann, and Rolf Steinhilper. 2017. The
Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0.
Procedia CIRP 61, Supplement C (2017), 335 – 340. https://doi.org/10.1016/j.

11

https://doi.org/10.1109/ACCESS.2017.2657006
https://doi.org/10.1145/2808705.2808715
https://doi.org/10.1145/2732198.2732200
https://doi.org/10.1145/2732198.2732200
http://www.truststc.org/pubs/693.html
https://doi.org/10.1109/CPSRSG.2016.7684100
https://doi.org/10.1109/CPSRSG.2016.7684100
https://doi.org/10.1145/2732198.2732203
https://doi.org/10.1145/2732198.2732203
https://doi.org/10.1109/ETFA.2008.4638461
https://doi.org/10.1109/ETFA.2008.4638461
https://doi.org/10.1109/DSNW.2013.6615505
https://doi.org/10.1109/DSNW.2013.6615505
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1016/j.mfglet.2013.09.005
https://doi.org/10.1007/978-3-319-60876-1_7
https://doi.org/10.1007/978-3-319-56345-9_5
https://doi.org/10.1007/978-3-319-56345-9_5
https://doi.org/10.1007/978-3-319-56345-9_6
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1145/2380790.2380805
https://doi.org/10.1145/2542049
https://doi.org/10.1007/978-3-662-45355-1_5
https://doi.org/10.1007/978-3-662-45355-1_5
https://doi.org/10.1145/2897795.2897814
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/10.6028/nist.sp.800-82r2
https://doi.org/10.1016/j.procir.2016.11.152

procir.2016.11.152
[33] Prem Uppuluri and R. Sekar. 2001. Experiences with Specification-Based Intrusion

Detection. Springer Berlin Heidelberg, Berlin, Heidelberg, 172–189. https://doi.
org/10.1007/3-540-45474-8_11

[34] David I. Urbina, Jairo Giraldo, Alvaro A Cardenas, Junia Valente, Mustafa Faisal,
Nils Ole Tippenhauer, Justin Ruths, Richard Candell, and Henrik Sandberg. 2016.
Survey and new directions for physics-based attack detection in control systems.
Technical Report. NIST. https://doi.org/10.6028/nist.gcr.16-010

[35] Ján Vachálek, Lukás Bartalskỳ, Oliver Rovnỳ, Dana Šišmišová, Martin Morháč,
and Milan Lokšík. 2017. The digital twin of an industrial production line within
the industry 4.0 concept. In 2017 21st International Conference on Process Control
(PC). 258–262. https://doi.org/10.1109/PC.2017.7976223

[36] C. Wang, L. Fang, and Y. Dai. 2010. A Simulation Environment for SCADA
Security Analysis and Assessment. In 2010 International Conference on Measuring
Technology and Mechatronics Automation, Vol. 1. 342–347. https://doi.org/10.
1109/ICMTMA.2010.603

12

https://doi.org/10.1016/j.procir.2016.11.152
https://doi.org/10.1007/3-540-45474-8_11
https://doi.org/10.1007/3-540-45474-8_11
https://doi.org/10.6028/nist.gcr.16-010
https://doi.org/10.1109/PC.2017.7976223
https://doi.org/10.1109/ICMTMA.2010.603
https://doi.org/10.1109/ICMTMA.2010.603

	Abstract
	1 Introduction
	2 Use Cases
	3 Framework
	3.1 Input Knowledge
	3.2 CPS Twinning Framework
	3.3 Management Client

	4 Proof of Concept
	4.1 Scenario Specification
	4.2 Virtual Environment Generation
	4.3 Simulation & Results

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

